First, find the lengths of \(AB\) and \(AC\):
\(\vec{AB} = \vec{B} - \vec{A} = (2 - 2)\hat{i} + (2 + 3)\hat{j} + (3 - 3)\hat{k} = 0\hat{i} + 5\hat{j} + 0\hat{k}.\)
\(|\vec{AB}| = \sqrt{0^2 + 5^2 + 0^2} = 5.\)
\(\vec{AC} = \vec{C} - \vec{A} = (-1 - 2)\hat{i} + (1 + 3)\hat{j} + (3 - 3)\hat{k} = -3\hat{i} + 4\hat{j} + 0\hat{k}.\)
\(|\vec{AC}| = \sqrt{(-3)^2 + 4^2 + 0^2} = 5.\)
Since \(AB = AC\), triangle \(ABC\) is isosceles. The midpoint \(D\) of \(BC\) is given by:
\(\vec{D} = \frac{\vec{B} + \vec{C}}{2} = \frac{(2\hat{i} + 2\hat{j} + 3\hat{k}) + (-\hat{i} + 3\hat{j} + 3\hat{k})}{2} = \frac{\hat{i} + 5\hat{j} + 6\hat{k}}{2} = \frac{1}{2}\hat{i} + \frac{5}{2}\hat{j} + 3\hat{k}.\)
The length of the angle bisector \(\ell\) is given by:
\(\ell = |\vec{A} - \vec{D}| = \left|2\hat{i} - 3\hat{j} - 3\hat{k} - \left(\frac{1}{2}\hat{i} + \frac{5}{2}\hat{j} + 3\hat{k}\right)\right|.\)
\(\ell = \left|\frac{3}{2}\hat{i} - \frac{9}{2}\hat{j} - \frac{9}{2}\hat{k}\right| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{9}{2}\right)^2 + \left(-\frac{9}{2}\right)^2}.\)
\(\ell = \sqrt{\frac{9}{4} + \frac{81}{4} + \frac{81}{4}} = \sqrt{\frac{171}{4}} = \frac{\sqrt{45}}{2}.\)
Calculating \(2\ell^2\):
\(2\ell^2 = 2 \times \left(\frac{\sqrt{45}}{2}\right)^2 = 45.\)
The Correct answer is: 45