Step 1: Expanding the function
Expanding \( (x+1)^2 \):
\[
(x+1)^2 = x^2 + 2x + 1.
\]
Rewriting the integral:
\[
I = \int e^x (x^2 + 2x + 1) dx.
\]
Step 2: Splitting into separate integrals
\[
I = \int e^x x^2 dx + 2\int e^x x dx + \int e^x dx.
\]
Using integration by parts, where \( u = x^2 \), \( dv = e^x dx \):
\[
du = 2x dx, \quad v = e^x.
\]
Applying integration by parts repeatedly:
\[
\int x^2 e^x dx = e^x (x^2 - 2x + 2).
\]
Similarly,
\[
\int x e^x dx = e^x (x - 1).
\]
Step 3: Evaluating and summing terms
\[
I = e^x (x^2 + 1) + c.
\]