Step 1: Substitution
Let:
\[
u = 1 - x
\]
Then \( du = -dx \), and when \( x = 0 \), \( u = 1 \), and when \( x = 1 \), \( u = 0 \). The integral becomes:
\[
I = \int_1^0 \frac{(1 - u)}{u^{3/4}} (-du) = \int_0^1 \frac{(1 - u)}{u^{3/4}} \, du
\]
We can break the integral into two parts:
\[
I = \int_0^1 \frac{1}{u^{3/4}} \, du - \int_0^1 \frac{u}{u^{3/4}} \, du
\]
Step 2: Evaluate the first integral
\[
I_1 = \int_0^1 u^{-3/4} \, du = \left[ 4u^{1/4} \right]_0^1 = 4
\]
Step 3: Evaluate the second integral
\[
I_2 = \int_0^1 u^{1/4} \, du = \left[ \frac{4u^{5/4}}{5} \right]_0^1 = \frac{4}{5}
\]
Step 4: Combine the results
\[
I = I_1 - I_2 = 4 - \frac{4}{5} = \frac{16}{5}
\]
Thus, the value of the integral is:
\[
\boxed{\frac{16}{5}}
\]