>
Mathematics
List of top Mathematics Questions
Find the order and degree of the differential equation:
\[ xy \left( \frac{d^2y}{dx^2} \right) + x \left( \frac{dy}{dx} \right)^2 - y \frac{dy}{dx} = 0 \]
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Differential Equations
Find the derivative of \( \sin^2 x \):
\[ \frac{d}{dx} \left( \sin^2 x \right) \]
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Differentiation
Find the derivative of \( x^5 + \cos 2x \):
\[ \frac{d}{dx} \left( x^5 + \cos 2x \right) \]
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Differentiation
Find the derivative of \( \sec^{-1}(x) \):
\[ \frac{d}{dx} \left( \sec^{-1}(x) \right) \]
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Differentiation
Find the derivative of \( a^x \):
\[ \frac{d}{dx} \left( a^x \right) \]
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Differentiation
Solve the system:
\[ \begin{pmatrix} x \\ y \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} 2x - 1 \\ 9 \end{pmatrix} \] Find the values of \(x\) and \(y\).
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Systems of Linear Equations
If \[ A = \begin{bmatrix} 3 & 6 \\ -5 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix}, \] then \[ 6A - 5B = \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Matrices and Determinants
If \[ A = \begin{bmatrix} 2 & -3 \\ 4 & 6 \end{bmatrix} \] then \[ A^{-1} = \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Matrices and Determinants
If \[ A = \begin{bmatrix} 2 & \sqrt{2} & 0 \\ 3 & -2 & \frac{2}{5} \end{bmatrix} \] then \[ A^t = \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Matrices and Determinants
Evaluate the integral: \[ \int \frac{1 + x^8}{x^3} \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int x e^x \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
If \[ 2A + B + X = 0 \] where \[ A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ 5 & -2 \end{bmatrix}, \] then \[ X = \]
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Matrices and Determinants
Evaluate the integral: \[ \int \frac{1 + \cos(2x)}{1 - \cos(2x)} \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int \sec^5 x \tan x \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int \tan^2 x \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int \frac{2}{2 - 3x} \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int \frac{x^2 + 1}{x^4 + 1} \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int \cos^2 x \cdot \sin^2 x \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate the integral: \[ \int \sec x \, dx \] The correct answer is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Indefinite Integrals
Evaluate:
\(\sin \left( \cot^{-1} x \right)\)
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Inverse Trigonometric Functions
Evaluate:
\(\tan \left( \tan^{-1} \frac{3}{1} + \tan^{-1} \frac{2}{1} \right)\)
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Inverse Trigonometric Functions
Evaluate:
\(\cos^{-1} \left( \cos \frac{6\pi}{7} \right)\)
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Inverse Trigonometric Functions
Evaluate:
\(\tan^{-1} 3 - \sec^{-1} (-2)\)
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Inverse Trigonometric Functions
Evaluate:
\(\frac{3\pi}{2} - \sin^{-1} \left( -\frac{1}{2} \right)\)
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Inverse Trigonometric Functions
Let \( R \) be the relation in the set \( \mathbb{N} \) given by: \[ R = \{ (a, b) : a = b - 2, b>6 \}. \] The correct answer in the following is:
Bihar Board XII - 2024
Bihar Board XII
Mathematics
Relations
Prev
1
...
188
189
190
191
192
...
1058
Next