We are given the equation \( \tan \left( \frac{\pi}{12} + 2x \right) = \cot 3x \).
Using the identity \( \cot \theta = \frac{1}{\tan \theta} \), we get: \[ \tan \left( \frac{\pi}{12} + 2x \right) = \frac{1}{\tan 3x} \] Multiplying both sides by \( \tan 3x \), we get: \[ \tan \left( \frac{\pi}{12} + 2x \right) \tan 3x = 1 \] Now solve for \( x \) by substituting values: \[ x = \frac{\pi}{12} \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]