1. Formula for Highest Power of a Prime in Factorials: - The highest power of a prime \( p \) dividing \( n! \) is given by:
\[ n_p = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots \]
2. Substitute \( n = 1000 \) and \( p = 3 \):
\[ n_3 = \left\lfloor \frac{1000}{3} \right\rfloor + \left\lfloor \frac{1000}{3^2} \right\rfloor + \left\lfloor \frac{1000}{3^3} \right\rfloor + \dots \]
3. Compute each term:
\[ n_3 = \left\lfloor \frac{1000}{3} \right\rfloor + \left\lfloor \frac{1000}{9} \right\rfloor + \left\lfloor \frac{1000}{27} \right\rfloor + \left\lfloor \frac{1000}{81} \right\rfloor + \left\lfloor \frac{1000}{243} \right\rfloor + \left\lfloor \frac{1000}{729} \right\rfloor. \]
4. Sum up the terms:
\[ n_3 = 333 + 111 + 37 + 12 + 4 + 1 = 498. \]
5. Thus, \( n = 498 \).