Step 1: Known sum-to-product identities.
\[
\cos x + \cos y = 2\cos\!\Bigl(\tfrac{x+y}{2}\Bigr)\,\cos\!\Bigl(\tfrac{x-y}{2}\Bigr),
\]
\[
\sin x - \sin y = 2\cos\!\Bigl(\tfrac{x+y}{2}\Bigr)\,\sin\!\Bigl(\tfrac{x-y}{2}\Bigr).
\]
From these, we can solve for \(\cos\!\bigl(\tfrac{x-y}{2}\bigr)\) and \(\sin\!\bigl(\tfrac{x-y}{2}\bigr)\), and also find \(\cos\!\bigl(\tfrac{x+y}{2}\bigr)\).
Step 2: Express \(\sin(x-y) + \cos(x-y)\).
Recall:
\[
\sin(x-y)
= 2\sin\!\Bigl(\tfrac{x-y}{2}\Bigr)\,\cos\!\Bigl(\tfrac{x-y}{2}\Bigr),
\quad
\cos(x-y)
= \cos^2\!\Bigl(\tfrac{x-y}{2}\Bigr) - \sin^2\!\Bigl(\tfrac{x-y}{2}\Bigr).
\]
We can then combine them.
Step 3: Numerics (outline).
A direct approach is to treat \(\cos x+\cos y=\frac{2}{3}\) and \(\sin x - \sin y=\frac{3}{4}\) as a system in terms of \(\tfrac{x+y}{2}\) and \(\tfrac{x-y}{2}\). After solving carefully, one arrives at
\[
\sin(x - y) + \cos(x - y) = \frac{127}{145}.
\]