$\frac{1}{7} $
$\frac{38}{7}$
$\frac{36}{7}$
$\frac{37}{7}$
Step 1: Arrange the data in ascending order.
The given data is 20, 5, 15, 2, 7, 3, 11.
Arranging in ascending order: 2, 3, 5, 7, 11, 15, 20.
Step 2: Calculate the mean.
Mean (\(\bar{x}\)) = \(\frac{2+3+5+7+11+15+20}{7} = \frac{63}{7} = 9\).
Step 3: Calculate the mean deviation about the mean (m).
m = \(\frac{\sum |x_i - \bar{x}|}{n}\)
m = \(\frac{|2-9| + |3-9| + |5-9| + |7-9| + |11-9| + |15-9| + |20-9|}{7}\)
m = \(\frac{7 + 6 + 4 + 2 + 2 + 6 + 11}{7} = \frac{38}{7}\).
Step 4: Calculate the median.
Since there are 7 data points, the median is the middle value, which is 7.
Step 5: Calculate the mean deviation about the median (M).
M = \(\frac{\sum |x_i - \text{median}|}{n}\)
M = \(\frac{|2-7| + |3-7| + |5-7| + |7-7| + |11-7| + |15-7| + |20-7|}{7}\)
M = \(\frac{5 + 4 + 2 + 0 + 4 + 8 + 13}{7} = \frac{36}{7}\).
Step 6: Calculate the mean of m and M.
Mean of m and M = \(\frac{m + M}{2} = \frac{\frac{38}{7} + \frac{36}{7}}{2} = \frac{\frac{74}{7}}{2} = \frac{74}{14} = \frac{37}{7}\).
Step 7: Calculate the mean deviation about the mean of m and M.
Mean of m and M = \(\frac{37}{7}\).
Mean deviation about the mean of m and M = \(\frac{\left|\frac{38}{7} - \frac{37}{7}\right| + \left|\frac{36}{7} - \frac{37}{7}\right|}{2} = \frac{\left|\frac{1}{7}\right| + \left|\frac{-1}{7}\right|}{2} = \frac{\frac{1}{7} + \frac{1}{7}}{2} = \frac{\frac{2}{7}}{2} = \frac{2}{14} = \frac{1}{7}\).
Therefore, the mean deviation about the mean of m and M is \(\frac{1}{7}\).
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]