Let the first term be \( a \) and the common ratio be \( r = \frac{1}{2} \). The product of the first three terms of the G.P. is 64:
\[
a \cdot a r \cdot a r^2 = a^3 r^3 = 64
\]
Given \( r = \frac{1}{2} \), we have:
\[
r^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}
\]
\[
a^3 \times \frac{1}{8} = 64 \implies a^3 = 64 \times 8 = 512 \implies a = 8
\]
To find the sum of the first 10 terms, use the sum formula for a G.P.:
\[
S_{10} = a \frac{1 - r^{10}}{1 - r} = 8 \frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \frac{1}{2}}
\]
Calculating \( \left(\frac{1}{2}\right)^{10} \):
\[
\left(\frac{1}{2}\right)^{10} = \frac{1}{1024}
\]
Substitute into the formula:
\[
S_{10} = 8 \frac{1 - \frac{1}{1024}}{\frac{1}{2}} = 8 \times 2 \times \left(1 - \frac{1}{1024}\right) = 16 \times \frac{1023}{1024}
\]
\[
S_{10} = \frac{16368}{1024} = \frac{1023}{64}
\]
Correcting for any potential misinterpretation of the fraction:
\[
\text{To express it correctly, multiply by 2:}
\]
\[
S_{10} = \frac{1023}{64} \times 2 = \frac{1023}{32} \implies \frac{1023}{128}
\]