Step 1: Express \(\frac{2z-i}{z+2i}\) in terms of \(x\) and \(y\).
Given \(z = x + iy\), substitute and simplify the expression:
\[
\frac{2(x+iy)-i}{x+iy+2i} = \frac{2x + 2iy - i}{x + (y+2)i}
\]
Combine like terms in the numerator:
\[
= \frac{2x + (2y-1)i}{x + (y+2)i}
\]
Step 2: Write the expression in a form suitable for finding the argument.
Apply the formula for the argument of a complex number quotient:
\[
\arg\left(\frac{u}{v}\right) = \arg(u) - \arg(v)
\]
where \(u = 2x + (2y-1)i\) and \(v = x + (y+2)i\). The arguments are given by:
\[
\arg(u) = \tan^{-1}\left(\frac{2y-1}{2x}\right), \quad \arg(v) = \tan^{-1}\left(\frac{y+2}{x}\right)
\]
Setting the difference to \(\frac{\pi}{4}\) (as given):
\[
\tan^{-1}\left(\frac{2y-1}{2x}\right) - \tan^{-1}\left(\frac{y+2}{x}\right) = \frac{\pi}{4}
\]
Step 3: Use the angle difference identity for tangent to derive the locus equation.
Utilizing the tangent subtraction identity:
\[
\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}
\]
Substituting \(\alpha\) and \(\beta\):
\[
\frac{\left(\frac{2y-1}{2x}\right) - \left(\frac{y+2}{x}\right)}{1 + \left(\frac{2y-1}{2x}\right)\left(\frac{y+2}{x}\right)} = \tan\left(\frac{\pi}{4}\right) = 1
\]
Simplify and solve the resulting equation for \(x\) and \(y\). Algebraic manipulation (cross-multiplying and arranging terms) results in:
\[
2x^2 + 2y^2 - 5x + 3y - 2 = 0
\]
Conclusion:
The correct equation of the locus of \( P \) is \(2x^2 + 2y^2 - 5x + 3y - 2 = 0\), with \((x,y) \neq (0, -2)\) to avoid division by zero in the original expression.
\vspace{0.5cm}