Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then:
Start by recognizing the symmetry properties of the integrand: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \] Notice that \( \tan^2(-x) = \tan^2 x \), which implies that \( \tan^2 x \) is an even function.
However, \( 5^x \) is not symmetric around \( x = 0 \). Let's examine the function under a substitution that utilizes this symmetry: \[ u = -x, \quad dx = -du \] \[ \int_{\frac{\pi}{4}}^{-\frac{\pi}{4}} \frac{\tan^2 u}{1+5^{-u}} \, (-du) \] \[ = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+\frac{1}{5^x}} \, dx \] \[ = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{5^x \tan^2 x}{5^x+1} \, dx \] Now, using the symmetry of \( 5^x \) and \( \frac{1}{5^x} \): \[ I + I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \] \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \] This shows that the integral of the original function, multiplied by two, equals the integral of \( \tan^2 x \) over the same interval, confirming that the correct answer is: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx \]
\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]
For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to: