The general solution of the differential equation: \[ (6x^2 - 2xy - 18x + 3y) dx - (x^2 - 3x) dy = 0 \]
\( 3x^2 + 5xy - 2y^2 - 4x - 2y + C = 0 \) ]
Step 1: Checking for Exactness Given: \[ M(x, y) = 6x^2 - 2xy - 18x + 3y, \quad N(x, y) = -(x^2 - 3x) \] Compute: \[ \frac{\partial M}{\partial y} = -2x + 3, \quad \frac{\partial N}{\partial x} = -2x + 3 \] Since \( \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \), the equation is exact.
Step 2: Solving for \( F(x, y) \) Integrate \( M(x, y) \) with respect to \( x \): \[ F(x, y) = \int (6x^2 - 2xy - 18x + 3y) dx \] \[ = 2x^3 - x^2 y - 9x^2 + 3yx + g(y) \] Differentiate with respect to \( y \): \[ \frac{dF}{dy} = -x^2 + 3x + g'(y) \] Since \( \frac{dF}{dy} = N(x, y) \), equating: \[ -x^2 + 3x + g'(y) = -x^2 + 3x \] \[ g'(y) = 0 \Rightarrow g(y) = C \]
Step 3: Final Equation \[ 2x^3 - x^2 y - 9x^2 + 3yx + C = 0 \]
$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $
If the function
$ f(x) = \begin{cases} \frac{\cos ax - \cos 9x}{x^2}, & \text{if } x \neq 0 \\ 16, & \text{if } x = 0 \end{cases} $
is continuous at $ x = 0 $, then $ a = ? $