We are given that \( f(x) = \cos x \). Therefore, we need to evaluate the following expression:
\[
\frac{1}{2} \left[ f(x + y) + f(y - x) - f(x) \cdot f(y) \right]
\]
Substitute \( f(x) = \cos x \) into the expression:
\[
= \frac{1}{2} \left[ \cos(x + y) + \cos(y - x) - \cos x \cdot \cos y \right]
\]
1. Step 1: Simplify the expression:
We use the property that \( \cos(y - x) = \cos(x - y) \) (since cosine is an even function). Thus, the expression simplifies to:
\[
= \frac{1}{2} \left[ \cos(x + y) + \cos(x - y) - \cos x \cdot \cos y \right]
\]
2. Step 2: Final answer:
The final result is:
\[
\cos(x + y) + \cos(y - x) - \cos x \cdot \cos y
\]
which corresponds to option (A).