We are asked to simplify the expression \( \cos{A} \cos{2A} \). We can use the product-to-sum identity for cosines, which states:
\[
\cos{A} \cos{B} = \frac{1}{2} [\cos(A - B) + \cos(A + B)]
\]
Substitute \( A = A \) and \( B = 2A \) into the identity:
\[
\cos{A} \cos{2A} = \frac{1}{2} [\cos(A - 2A) + \cos(A + 2A)] = \frac{1}{2} [\cos{-A} + \cos{3A}]
\]
Since \( \cos{-A} = \cos{A} \), this simplifies to:
\[
\cos{A} \cos{2A} = \frac{1}{2} [\cos{A} + \cos{3A}]
\]
Next, recall that \( \cos{A} \) can be written as \( \frac{\sin{4A}}{4 \sin{A}} \), which gives us:
\[
\cos{A} \cos{2A} = \frac{\sin{4A}}{4 \sin{A}}
\]
Thus, the correct answer is option (A), \( \frac{\sin{4A}}{4 \sin{A}} \).