We are asked to find the domain of the composite function \( f(g(x)) = \log(5 \cdot \cos(x)) \).
1. For the logarithmic function \( f(x) = \log(5x) \), the domain is \( x>0 \), meaning \( 5 \cdot \cos(x)>0 \). Therefore, we need:
\[
\cos(x)>0
\]
2. The cosine function is positive for values of \( x \) in the intervals:
\[
x \in \left( 0, \frac{\pi}{2} \right) \cup \left( \frac{3\pi}{2}, 2\pi \right) \dots
\]
Therefore, the domain of \( f(g(x)) \) is \( \left( 0, \infty \right) \).