We are given \( f(x) = \int_0^{x^3} (t + 4)^2 dt \).
To find \( f'(x) \), we apply the Leibniz rule for differentiation under the integral sign: \[ f'(x) = \frac{d}{dx} \left( \int_0^{x^3} (t + 4)^2 dt \right) = (x^3)' \cdot (t + 4)^2 \Big|_{t = x^3}. \] Thus, we have: \[ f'(x) = 3x^2 \cdot (x^3 + 4)^2. \] Now, evaluating at \( x = 2 \): \[ f'(2) = 3(2)^2 \cdot (2^3 + 4)^2 = 3 \cdot 4 \cdot (8 + 4)^2 = 3 \cdot 4 \cdot 12^2 = 432. \] Thus, \( f'(2) = 432 \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]