Using the principle of inclusion-exclusion, we can calculate the number of students who play exactly two sports: \[ n({exactly two}) = n(A \cap B) + n(B \cap C) + n(A \cap C) - 3n(A \cap B \cap C) \] From the problem: - \( n(A \cup B \cup C) = 100 \) - \( n(A) = 60 \), \( n(B) = 55 \), \( n(C) = 70 \) - \( n(A \cap B \cap C) = 20 \) Thus, the number of students who play exactly two sports is \( 45 \).
Thus, the correct answer is (B).
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.