\( \tan 15^\circ + \tan 45^\circ \).
1. Step 1: Use the known value of \( \tan 45^\circ \):
We know that \( \tan 45^\circ = 1 \).
2. Step 2: Add the values of \( \tan 15^\circ \) and \( \tan 45^\circ \):
Thus, the expression becomes:
\[
\tan 15^\circ + \tan 45^\circ = \tan 15^\circ + 1
\]
Using a calculator or a known trigonometric value for \( \tan 15^\circ \), we find:
\[
\tan 15^\circ \approx 0.2679
\]
So,
\[
\tan 15^\circ + \tan 45^\circ = 0.2679 + 1 \approx
1.2679
\]
Thus, the correct answer is \( \tan 60^\circ \) which is approximately \(
1.2679 \), corresponding to option (B).