\(-\frac{10}{7}\)
\(\frac{10}{7}\)
\(\frac{5}{7}\)
\(-\frac{5}{7}\)
The given equation is:
\( \cos A + \cos C = 2(1 - \cos B) \)
Rewriting the left-hand side using the sum-to-product identities:
\( 2 \cos \frac{A + C}{2} \cos \frac{A - C}{2} = 4 \sin^2 \frac{B}{2} \)
From the identity \( \cos \frac{A+C}{2} = \sin \frac{B}{2} \), we have:
\( \cos \frac{A-C}{2} = 2 \sin \frac{B}{2} \)
Substituting back:
\( 2 \cos \frac{B}{2} \cos \frac{A-C}{2} = 4 \sin \frac{B}{2} \cos \frac{B}{2} \)
Simplify further:
\( 2 \sin \frac{A+C}{2} \cos \frac{A-C}{2} = 4 \sin \frac{B}{2} \cos \frac{B}{2} \)
This shows:
\( \sin A + \sin C = 2 \sin B \)
Given \( a + c = 2b \), substitute \( a = 3, c = 7 \), and \( b = 5 \).
Now compute:
\( \cos A - \cos C = \frac{b^2 + c^2 - a^2}{2bc} - \frac{a^2 + b^2 - c^2}{2ab} \)
Substitute the values:
\( \cos A - \cos C = \frac{25 + 49 - 9}{70} - \frac{9 + 25 - 49}{30} \)
Simplify:
\( \cos A - \cos C = \frac{65}{70} - \frac{-15}{30} \)
Convert to a common denominator:
\( \cos A - \cos C = \frac{65}{70} + \frac{35}{70} = \frac{100}{70} = \frac{10}{7}\)
Simplify further:
\( \cos A - \cos C = \frac{10}{7} \)
The correct answer is option (A) \(-\frac{10}{7}\)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |