\(-\frac{10}{7}\)
\(\frac{10}{7}\)
\(\frac{5}{7}\)
\(-\frac{5}{7}\)
The given equation is:
\( \cos A + \cos C = 2(1 - \cos B) \)
Rewriting the left-hand side using the sum-to-product identities:
\( 2 \cos \frac{A + C}{2} \cos \frac{A - C}{2} = 4 \sin^2 \frac{B}{2} \)
From the identity \( \cos \frac{A+C}{2} = \sin \frac{B}{2} \), we have:
\( \cos \frac{A-C}{2} = 2 \sin \frac{B}{2} \)
Substituting back:
\( 2 \cos \frac{B}{2} \cos \frac{A-C}{2} = 4 \sin \frac{B}{2} \cos \frac{B}{2} \)
Simplify further:
\( 2 \sin \frac{A+C}{2} \cos \frac{A-C}{2} = 4 \sin \frac{B}{2} \cos \frac{B}{2} \)
This shows:
\( \sin A + \sin C = 2 \sin B \)
Given \( a + c = 2b \), substitute \( a = 3, c = 7 \), and \( b = 5 \).
Now compute:
\( \cos A - \cos C = \frac{b^2 + c^2 - a^2}{2bc} - \frac{a^2 + b^2 - c^2}{2ab} \)
Substitute the values:
\( \cos A - \cos C = \frac{25 + 49 - 9}{70} - \frac{9 + 25 - 49}{30} \)
Simplify:
\( \cos A - \cos C = \frac{65}{70} - \frac{-15}{30} \)
Convert to a common denominator:
\( \cos A - \cos C = \frac{65}{70} + \frac{35}{70} = \frac{100}{70} = \frac{10}{7}\)
Simplify further:
\( \cos A - \cos C = \frac{10}{7} \)
The correct answer is option (A) \(-\frac{10}{7}\)

If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
| Trigonometrical equations | General Solutions |
| sin θ = 0 | θ = nπ |
| cos θ = 0 | θ = (nπ + π/2) |
| cos θ = 0 | θ = nπ |
| sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
| cos θ = 1 | θ = 2nπ |
| sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
| cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
| tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
| sin 2θ = sin 2α | θ = nπ ± α |
| cos 2θ = cos 2α | θ = nπ ± α |
| tan 2θ = tan 2α | θ = nπ ± α |