The absolute difference of the coefficients of \(x^{10}\) and \(x^7\) in the expansion of \(\left(2x^2 + \frac{1}{2x}\right)^{11}\) is equal to:
When dealing with expansions, simplify the general term first, then identify the required terms using the exponent relationships.
The general term in the expansion of \( \left( 2x^2 + \frac{1}{2x} \right)^{11} \) is:
\[ T_{r+1} = \binom{11}{r} (2x^2)^{11-r} \left( \frac{1}{2x} \right)^r. \]
Simplify:
\[ T_{r+1} = \binom{11}{r} 2^{11-r} x^{2(11-r)} \cdot \frac{1}{2^r x^r}. \]
\[ T_{r+1} = \binom{11}{r} \frac{2^{11-r}}{2^r} x^{22 - 3r}. \]
\[ T_{r+1} = \binom{11}{r} 2^{11-2r} x^{22 - 3r}. \]
For the coefficient of \( x^{10} \):
\[ 22 - 3r = 10 \implies r = 4. \]
The coefficient of \( x^{10} \) is:
\[ \binom{11}{4} 2^{11 - 2(4)} = \binom{11}{4} 2^{3}. \]
For the coefficient of \( x^7 \):
\[ 22 - 3r = 7 \implies r = 5. \]
The coefficient of \( x^7 \) is:
\[ \binom{11}{5} 2^{11 - 2(5)} = \binom{11}{5} 2^{1}. \]
Now calculate the absolute difference:
\[ \text{Difference} = \left| \binom{11}{4} 2^3 - \binom{11}{5} 2^1 \right|. \]
Expand the binomial coefficients:
\[ \binom{11}{4} = \frac{11 \cdot 10 \cdot 9 \cdot 8}{4 \cdot 3 \cdot 2 \cdot 1} = 330, \]
\[ \binom{11}{5} = \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 462. \]
Substitute into the expression:
\[ \text{Difference} = \left| 330 \cdot 8 - 462 \cdot 2 \right|. \]
\[ \text{Difference} = \left| 2640 - 924 \right| = 1716. \]
Finally, express \(1716\) as \( 12^3 - 12 \):
\[ 12^3 = 1728, \quad 12^3 - 12 = 1728 - 12 = 1716. \]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.
This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr