We are tasked with solving the given expression:
\( z^2 + 8iz - 15 \quad \text{and} \quad z^2 - 3iz - 2 \in \mathbb{R}. \)
Rewrite the given condition:
Let: \( 1 + \frac{11iz - 13}{z^2 - 3iz - 2} \in \mathbb{R}. \) \( Z = \alpha - \frac{13}{11} i. \)
The imaginary part of the denominator must satisfy:
\( z^2 - 3iz - 2 \) is imaginary. Substitute \( z = x + iy: \)
\( z^2 = x^2 - y^2 + 2xyi, \quad -3iz = -3(x + iy)i = -3yi + 3x, \)
so: \( z^2 - 3iz - 2 = (x^2 - y^2 + 3x - 2) + (2xy - 3y)i. \)
For the expression to be purely imaginary:
\( \text{Re}(z^2 - 3iz - 2) = 0 \implies x^2 - y^2 + 3x - 2 = 0. \)
Rewriting:
Factorize:
Let:
where: \( x^2 = y^2 - 3y + 2. \) \( x^2 = (y - 1)(y - 2). \) \( z = \alpha - \frac{13}{11} i, \) \( x = \alpha, \quad y = -\frac{13}{11}. \)
Substitute \( x = \alpha \) and \( y = -\frac{13}{11} \) into \( x^2 = (y - 1)(y - 2): \)
\( \alpha^2 = -\frac{13}{11} - 1 - \frac{13}{11} - 2. \)
Simplify:
Substitute \( \alpha^2 = \frac{24 \times 35}{121}: \)
\( \alpha^2 = -\frac{24}{11} - \frac{35}{11}, \) \( \alpha^2 = \frac{24 \times 35}{121}. \)
\( 242\alpha^2 = 242 \cdot \frac{24 \times 35}{121}. \)
Simplify:
Final Answer: \( 242\alpha^2 = 1680. \)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: