Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
Let $a_1, a_2, \ldots, a_n$ be in AP If $a_5=2 a_7$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Sequence: Sequence and Series is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.
Eg: a1,a2,a3, a4…….
Series: A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.
Eg: If a1,a2,a3, a4……. etc is considered to be a sequence, then the sum of terms in the sequence a1+a2+a3+ a4……. are considered to be a series.
A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.
A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.
A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.
Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as, F0 = 0 and F1 = 1 and Fn = Fn-1 + Fn-2