Let m1, m2 be the slopes of two adjacent sides of a square of side a such that \(a^2 + 11a + 3(m_1^2 + m_2^2) = 220\). If one vertex of the square is \((10(\cos \alpha - \sin \alpha), 10(\sin \alpha + \cos \alpha))\), where \(\alpha \in \left(0, \frac{\pi}{2}\right)\)and the equation of one diagonal is \((\cos \alpha - \sin \alpha)x + (\sin \alpha + \cos \alpha)y = 10\), then \(72(\sin^4 \alpha + \cos^4 \alpha) + a^2 - 3a + 13\) is equal to :