Let a1, a2, a3,…. be an A.P. If
\(\begin{array}{l} \displaystyle\sum\limits_{r=1}^\infty\frac{a_r}{2^r}=4,\end{array}\)
then 4a2 is equal to ________.
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
Arithmetic Progression (AP) is a mathematical series in which the difference between any two subsequent numbers is a fixed value.
For example, the natural number sequence 1, 2, 3, 4, 5, 6,... is an AP because the difference between two consecutive terms (say 1 and 2) is equal to one (2 -1). Even when dealing with odd and even numbers, the common difference between two consecutive words will be equal to 2.
In simpler words, an arithmetic progression is a collection of integers where each term is resulted by adding a fixed number to the preceding term apart from the first term.
For eg:- 4,6,8,10,12,14,16
We can notice Arithmetic Progression in our day-to-day lives too, for eg:- the number of days in a week, stacking chairs, etc.
Read More: Sum of First N Terms of an AP