Let Tr denote the rth term from the beginning in the binomial expansion of $(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}})^n$. Then
$T_{r+1} = {}^nC_r (\sqrt[4]{2})^{n-r} (\frac{1}{\sqrt[4]{3}})^r = {}^nC_r (2)^{\frac{n-r}{4}} (3)^{-\frac{r}{4}}$.
The fifth term from the beginning is T5, so r = 4:
$T_5 = {}^nC_4 (2)^{\frac{n-4}{4}} (3)^{-1}$.
The fifth term from the end is T'n-4 = Tn-3, so r = n − 4:
$T_{n-3} = {}^nC_{n-4} (2)^{\frac{n-(n-4)}{4}} (3)^{-\frac{n-4}{4}} = {}^nC_4 (2)^{\frac{1}{}} (3)^{\frac{4-n}{4}}$.
We are given that $\frac{T_5}{T_{n-3}} = \sqrt{6}$. Therefore,
$\frac{{}^nC_4 (2)^{\frac{n-4}{4}} (3)^{-1}}{{}^nC_4 (2)^{\frac{1}{}} (3)^{\frac{4-n}{4}}} = \sqrt{6} \Rightarrow \frac{(2)^{\frac{n-4}{4}} 3^{-1}}{(2)^{\frac{1}{}} 3^{\frac{4-n}{4}}} = 2^{\frac{n-4}{4} - \frac{1}{4}} 3^{-1 - \frac{4-n}{4}} = 2^{\frac{n-8}{4}} 3^{\frac{n-8}{4}} = (2 \cdot 3)^{\frac{n-8}{4}} = 6^{\frac{n-8}{4}} = \sqrt{6}$.
Since $\sqrt{6} = 6^{1/2}$, we have:
$6^{\frac{n-8}{4}} = 6^{\frac{1}{2}} \Rightarrow \frac{n - 8}{4} = \frac{1}{2} \Rightarrow n - 8 = 2 \Rightarrow n = 10$.
The third term from the beginning is T3, so r = 2:
$T_3 = {}^{10}C_2 (2)^{\frac{10-2}{4}} (3)^{-\frac{2}{4}} = 45 \cdot 2^2 \cdot 3^{-1/2} = 45 \cdot 4 \cdot \frac{1}{\sqrt{3}} = \frac{180}{\sqrt{3}} = \frac{180\sqrt{3}}{3} = 60\sqrt{3}$.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.
This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr