To evaluate the two statements about Stannane, let's break them down:
This makes Statement-I true.
Thus, Statement-II is false as Stannane is not a planar molecule but a tetrahedral one.
Given these analyses, the correct answer is: Statement-I is true but Statement-II is false.

If the CFSE of $\left[ Ti \left( H _2 O \right)_6\right]^{3+}$ is $-960 kJ / mol$, this complex will absorb maximum at wavelength ___$nm$ (nearest integer) Assume Planck's constant $( h )=64 \times 10^{-34} Js$, Speed of light $( c )=30 \times 10^8 m / s$ and Avogadro's Constant $\left( N _{ A }\right)=6 \times 10^{23} / mol$
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
A coordination compound holds a central metal atom or ion surrounded by various oppositely charged ions or neutral molecules. These molecules or ions are re-bonded to the metal atom or ion by a coordinate bond.
A coordination entity composes of a central metal atom or ion bonded to a fixed number of ions or molecules.
A molecule, ion, or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is commonly called a ligand. It may be either neutral, positively, or negatively charged.