To evaluate the two statements about Stannane, let's break them down:
This makes Statement-I true.
Thus, Statement-II is false as Stannane is not a planar molecule but a tetrahedral one.
Given these analyses, the correct answer is: Statement-I is true but Statement-II is false.

If the CFSE of $\left[ Ti \left( H _2 O \right)_6\right]^{3+}$ is $-960 kJ / mol$, this complex will absorb maximum at wavelength ___$nm$ (nearest integer) Assume Planck's constant $( h )=64 \times 10^{-34} Js$, Speed of light $( c )=30 \times 10^8 m / s$ and Avogadro's Constant $\left( N _{ A }\right)=6 \times 10^{23} / mol$
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
A coordination compound holds a central metal atom or ion surrounded by various oppositely charged ions or neutral molecules. These molecules or ions are re-bonded to the metal atom or ion by a coordinate bond.
A coordination entity composes of a central metal atom or ion bonded to a fixed number of ions or molecules.
A molecule, ion, or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is commonly called a ligand. It may be either neutral, positively, or negatively charged.