Slope of tangent to curve y = 5x2 + 2x – 25,
\(m=\left(\frac{dy}{dx}\right)_{at(2,−1)}=22\)
Equation of tangent: y + 1 = 22(x – 2)
y = 22x – 45
Slope of tangent to y = x3 – x2 + x at point (a, b) = 3a2 – 2a + 1
3a2 – 2a + 1 = 22
3a2 – 2a – 21 = 0
\(∴a=3\) or \(a=−\frac{7}{3}\)
Also b = a3 – a2 + a
Then \((a,b)=(3,21)\) or, \((−\frac{7}{3},–\frac{151}{9})\)
\((−\frac{7}{3},–\frac{151}{9})\) does not satisfy the equation of tangent
\(∴a=3,b=21\)
the, \(|2a+9b|=|2\times3+9\times21| =|195| = 195\)
So, the answer is 195.
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to:
m×n = -1