>
CUET (UG)
List of top Questions asked in CUET (UG)
The value of
\(sin^{-1} [cos(sin^{-1}\frac {\sqrt{3}}{2})]\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
\(2\tan^{-1} \frac12+\tan^{-1}\frac 17=\tan^{-1}x\)
, then the value of
\(x\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
If
\(\begin{bmatrix} 1 & 2 \\[0.3em] 3 &4 \end{bmatrix}\)
\(\begin{bmatrix} 3& 1 \\[0.3em] 2 &5 \end{bmatrix}\)
\(=\begin{bmatrix} 7 & 11 \\[0.3em] K&23 \end{bmatrix}\)
,then the value of k is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(A=\begin{pmatrix} 1 & -2 & 3 \\[0.3em] 4 & 2 &5 \end{pmatrix}\)
and
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 4 & 5 \\[0.3em] 2&1 \end{pmatrix}\)
and
\(BA=(b_{ij})\)
,then
\(b_{21}+b_{32}=\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(\begin{bmatrix} 1 & 3 & 5 \\[0.3em] 1 & 0 &3 \\[0.3em] 0 &1 &0 \end{bmatrix}\)
,then
\(|(adjA)| \)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Adjoint and Inverse of a Matrix
The value of
\(K\)
,If
\(\begin{bmatrix} 1 & K & 3 \\[0.3em] 3 & K & -2 \\[0.3em] 2 & 3 & -1 \end{bmatrix}=33\)
,is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The value of det
\((A^2-2A)\)
,If
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 2 &1 \end{pmatrix}\)
,is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(\begin{bmatrix} x+4 & 2x & 2x \\[0.3em] 2x & x+4 & 2x\\[0.3em] 2x & 2x & x+4 \end{bmatrix}=\lambda(4-x)^2\)
,then value of
\(\lambda \)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
for which value of
\(\lambda\)
is the function ,
\(f(x) = \begin{cases} \lambda(x^2-2x) & \text{if } x \leq 0 \\ 4x+1& \text{if } x > 0 \end{cases}\)
continuous at
\(x=0 ?\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Continuity and differentiability
The derivative
\(\frac{\mathrm dy}{\mathrm d x}\)
,if
\(x=a(\theta -sin\theta),y=a(1+cos\theta)\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
If
\(y=sin^{-1}x \)
and
\((1-x^2)\frac{d^2y}{dx^2} -x \frac{dy}{dx}=K\)
,then value of K is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
If
\(y=log[\frac{x^2}{e^2}]\)
then value of
\(\frac{d^2y}{dx^2}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
The condition on a and b, such that for
\(y = \frac{a}{x}-\frac{b}{x²}\)
,
\(\frac{dy}{dx} =0\)
at x=1 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
The interval in which the function
\(f(x) = 10-6x-2x²\)
is decreasing is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Increasing and Decreasing Functions
Area of the region bounded by the curve |x|+|y|=1 and x-axis is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
The value of the integral
\(\int\limits_2^4 \frac{x}{x^2+1} dx\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
The sum of order and degree of the differential equation
\[\frac{\{1+(\frac{dy}{dx})^2\}^\frac{5}{2}}{\frac{d^2y}{dx^2}}=p\]
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Order and Degree of a Differential Equation
The solution of the differential equation
\(\frac{dy}{dx}= \frac{6}{x^2}; y(1) = 3\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Solution of Differential Equations
The mean of the number of heads in a simultaneous toss of three coins is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
For the LPP
Maximise z=x+y
subject to x-y≤-1, x+y≤2, x, y≥0, z has:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
Choose the wrong statement from the following:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
Let f: R→R defined by f(x)=2x
3
-7 for x∈R. Then:
(A) f is one-one function
(B) f is many to one function
(C) f is bijective function
(D) f is into function
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
Match List I with List II
LIST I
LIST II
A
.
Range of y=cosec
-1
x
I
.
R-(-1, 1)
B
.
Domain of sec
-1
x
II
.
(0, π)
C
.
Domain of sin
-1
x
III
.
[-1, 1]
D
.
Range of y=cot
-1
x
IV
.
\([\frac{-π}{2},\frac{π}{2}]\)
-{0}
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
Let
\(tan^{-1}y=tan^{-1}x+tan^{-1}(\frac{2x}{1-x^2})\)
. Then y is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
The value of 2y-3x, if
\(2\begin {bmatrix}x &5\\ 7&y-3\end{bmatrix}+\begin{bmatrix}3&-4\\ 1&2\end{bmatrix}=\begin{bmatrix}7&6 \\15&14\end{bmatrix}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
Prev
1
...
106
107
108
109
110
...
374
Next