To find \(|\text{adj}A|\), where \(A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 0 & 3 \\ 0 & 1 & 0 \end{bmatrix}\), we can use the property that \(|\text{adj}A| = |\det A|^{n-1}\) for an \(n \times n\) matrix.
Here, \(n = 3\). Thus, \(|\text{adj}A| = |\det A|^2\).
First, calculate \(\det A\):
\(\det A = 1 \left(0 - 3\right) - 3 \left(0 - 0\right) + 5 \left(1 - 0\right) = -3 + 5 = 2\).
Therefore,
\(|\text{adj}A| = |2|^2 = 4\).
Thus, the correct answer is \(4\).