Question:

The value of \(K\),If \(\begin{bmatrix}    1 & K & 3          \\[0.3em]        3 & K   & -2 \\[0.3em]  2  & 3 & -1      \end{bmatrix}=33\),is :

Updated On: May 13, 2025
  • \(-1\)
  • \(0\)
  • \(1\)
  • \(2\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To find the value of \(K\) for which the determinant of the matrix \(\begin{bmatrix}1 & K & 3 \\ 3 & K & -2 \\ 2 & 3 & -1\end{bmatrix}\) is 33, we calculate the determinant using the formula for a 3x3 matrix:
\[\text{Determinant} = a(ei-fh) - b(di-fg) + c(dh-eg)\]
Given the matrix:
1K3
3K-2
23-1
Substituting into the determinant formula, we have:
\[1((K \times -1) - (-2 \times 3)) - K((3 \times -1) - (-2 \times 2)) + 3((3 \times 3) - (K \times 2))\]
Simplifying each term:
\[1(-K + 6) - K(-3 + 4) + 3(9 - 2K)\]
\[= 1(-K + 6) + K + 3(9 - 2K)\]
\[= -K + 6 + K + 27 - 6K\]
Simplifying further:
\[= 33 - 6K\]
We set the determinant equal to 33:
\[33 - 6K = 33\]
Solving for \(K\), we subtract 33 from both sides:
\[-6K = 0\]
Thus, dividing both sides by -6 gives:
\[K = 0\]
Therefore, the value of \(K\) is \(0\).
Was this answer helpful?
0
0