Given that \(y=\sin^{-1}x\), we need to find \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\).
We know the derivative of \(\sin^{-1}x\) is \(\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}\).
Now, let's differentiate \(\frac{dy}{dx}\) with respect to \(x\) to find \(\frac{d^2y}{dx^2}\):
\(\frac{d}{dx}\left(\frac{1}{\sqrt{1-x^2}}\right) = \frac{d}{dx}(1-x^2)^{-\frac{1}{2}}\).
Using the chain rule, this becomes:
\(-\frac{1}{2}(1-x^2)^{-\frac{3}{2}}(0-2x) = \frac{x}{(1-x^2)^{\frac{3}{2}}}\).
Hence, \(\frac{d^2y}{dx^2}=\frac{x}{(1-x^2)^{\frac{3}{2}}}\).
We substitute these into the given equation:
\((1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx}=K\).
\((1-x^2)\left(\frac{x}{(1-x^2)^{\frac{3}{2}}}\right) - x\left(\frac{1}{\sqrt{1-x^2}}\right)=K\).
Simplifying this, we get:
\(\frac{x}{\sqrt{1-x^2}}-\frac{x}{\sqrt{1-x^2}}=K\).
This simplifies to \(0=K\).
Thus, the value of \(K\) is 0.