To find the derivative \(\frac{\mathrm dy}{\mathrm dx}\), we need to use the parametric equations given: \(x=a(\theta - \sin \theta)\) and \(y=a(1 + \cos \theta)\).
First, we find the derivatives \(\frac{\mathrm{d}x}{\mathrm{d}\theta}\) and \(\frac{\mathrm{d}y}{\mathrm{d}\theta}\):
\(\frac{\mathrm{d}x}{\mathrm{d}\theta} = a(1 - \cos \theta)\)
\(\frac{\mathrm{d}y}{\mathrm{d}\theta} = a(-\sin \theta)\)
Next, we use the chain rule to find \(\frac{\mathrm{d}y}{\mathrm{d}x}\):
\(\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} = \frac{a(-\sin \theta)}{a(1 - \cos \theta)} = \frac{-\sin \theta}{1 - \cos \theta}\)
Notice that \(\frac{-\sin \theta}{1 - \cos \theta}\) can be simplified using the identity:
\(1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}\)
and
\(\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\)
Substituting in, we get:
\(\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} = -\cot \frac{\theta}{2}\)
Thus, the derivative \(\frac{\mathrm dy}{\mathrm dx}\) is \(-\cot \frac{\theta}{2}\).