Question:

The value of 2y-3x, if
\(2\begin {bmatrix}x &5\\ 7&y-3\end{bmatrix}+\begin{bmatrix}3&-4\\ 1&2\end{bmatrix}=\begin{bmatrix}7&6 \\15&14\end{bmatrix}\) is:

Updated On: May 13, 2025
  • 12
  • -10
  • 6
  • -5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To solve for the value of \(2y - 3x\) given the matrix equation: \(2\begin {bmatrix}x &5\\ 7&y-3\end{bmatrix}+\begin{bmatrix}3&-4\\ 1&2\end{bmatrix}=\begin{bmatrix}7&6 \\15&14\end{bmatrix}\), we follow these steps:
1. Distribute the 2 into the first matrix:
\(2\begin{bmatrix}x & 5 \\ 7 & y-3\end{bmatrix} = \begin{bmatrix}2x & 10 \\ 14 & 2(y-3)\end{bmatrix} = \begin{bmatrix}2x & 10 \\ 14 & 2y-6\end{bmatrix}\)
2. Add the second matrix:
\(\begin{bmatrix}2x & 10 \\ 14 & 2y-6\end{bmatrix} + \begin{bmatrix}3 & -4 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}2x+3 & 10-4 \\ 14+1 & 2y-6+2\end{bmatrix} = \begin{bmatrix}2x+3 & 6 \\ 15 & 2y-4\end{bmatrix}\)
3. Set this equal to the given matrix:
\(\begin{bmatrix}2x+3 & 6 \\ 15 & 2y-4\end{bmatrix} = \begin{bmatrix}7 & 6 \\ 15 & 14\end{bmatrix}\)
4. Equate corresponding elements:
- For the first row, \(2x+3 = 7\)
- For the second row, \(2y-4 = 14\)
5. Solve these equations:
- \(2x+3 = 7 \Rightarrow 2x = 4 \Rightarrow x = 2\)
- \(2y-4 = 14 \Rightarrow 2y = 18 \Rightarrow y = 9\)
6. Find \(2y - 3x\):
- \(2y - 3x = 2(9) - 3(2) = 18 - 6 = 12\)
Therefore, the value of \(2y - 3x\) is 12.
Was this answer helpful?
0
0