If \( y = \tan(\log x) \), then \( \frac{d^2y}{dx^2} \) is given by:
If \(3A = \begin{bmatrix} 1 & 2 & 2 \\[0.3em] 2 & 1 & -2 \\[0.3em] a & 2 & b \end{bmatrix}\) and \(AA^T = I\), then\(\frac{a}{b} + \frac{b}{a} =\):
If \[ A = \begin{bmatrix} 1 & 0 & 2\\ 2 & 1 & 3 \\3 & 2 & 4 \end{bmatrix}, \] then evaluate \( A^2 - 5A + 6I \)=
If the origin is shifted to a point \( P \) by the translation of axes to remove the \( y \)-term from the equation \( x^2 - y^2 + 2y - 1 = 0 \), then the transformed equation of it is: