Given:
\[
f(x) = \frac{1+x}{1-x}
\]
Calculate \( f(-x) \):
\[
f(-x) = \frac{1 + (-x)}{1 - (-x)} = \frac{1 - x}{1 + x}
\]
Now,
\[
f(x) + f(-x) = \frac{1+x}{1-x} + \frac{1 - x}{1 + x}
\]
Find a common denominator \((1 - x)(1 + x) = 1 - x^2\):
\[
= \frac{(1+x)^2 + (1 - x)^2}{1 - x^2}
\]
Calculate numerator:
\[
(1+x)^2 + (1 - x)^2 = (1 + 2x + x^2) + (1 - 2x + x^2) = 1 + 2x + x^2 + 1 - 2x + x^2 = 2 + 2x^2
\]
Simplify numerator:
\[
2 + 2x^2 = 2(1 + x^2)
\]
So,
\[
f(x) + f(-x) = \frac{2(1 + x^2)}{1 - x^2}
\]
But the problem expects a simplified constant value. Check again carefully.
Wait, the problem might have a misinterpretation or typo in options.
Recheck algebra carefully:
\[
f(x) + f(-x) = \frac{1+x}{1-x} + \frac{1 - x}{1 + x} = \frac{(1+x)^2 + (1 - x)^2}{1 - x^2}
\]
Numerator:
\[
(1+x)^2 + (1 - x)^2 = (1 + 2x + x^2) + (1 - 2x + x^2) = 2 + 2x^2
\]
Denominator:
\[
1 - x^2
\]
Hence,
\[
f(x) + f(-x) = \frac{2(1 + x^2)}{1 - x^2}
\]
So the expression depends on \( x \), so it cannot be any constant.
Check for \( x=0 \):
\[
f(0) + f(-0) = f(0) + f(0) = 2 f(0) = 2 \times \frac{1+0}{1-0} = 2 \times 1 = 2
\]
So for \( x=0 \), value is 2.