We are given the system of equations:
\[
x + y - z = 6,
\]
\[
3x + 2y - z = 5,
\]
\[
2x - y - 2z + 3 = 0.
\]
Step 1: Convert to standard form
Rearrange the third equation:
\[
2x - y - 2z = -3.
\]
Thus, the system of equations is:
\[
x + y - z = 6,
\]
\[
3x + 2y - z = 5,
\]
\[
2x - y - 2z = -3.
\]
Step 2: Solve for variables
Using the first equation:
\[
x + y = z + 6 \Rightarrow z = x + y - 6.
\]
Substituting \( z = x + y - 6 \) into the second equation:
\[
3x + 2y - (x + y - 6) = 5.
\]
Simplify:
\[
3x + 2y - x - y + 6 = 5.
\]
\[
2x + y + 6 = 5 \Rightarrow 2x + y = -1.
\]
Substituting \( z = x + y - 6 \) into the third equation:
\[
2x - y - 2(x + y - 6) = -3.
\]
Expanding:
\[
2x - y - 2x - 2y + 12 = -3.
\]
\[
-3y + 12 = -3.
\]
\[
-3y = -15 \Rightarrow y = 5.
\]
Substituting \( y = 5 \) into \( 2x + y = -1 \):
\[
2x + 5 = -1.
\]
\[
2x = -6 \Rightarrow x = -3.
\]
Using \( z = x + y - 6 \):
\[
z = -3 + 5 - 6 = -4.
\]
Step 3: Compute \( \alpha + \beta \)
\[
\alpha + \beta = x + y = -3 + 5 = 2.
\]
Thus, the correct answer is:
\[
\boxed{2}
\]