The given quadratic equation is \( 4x^2 - 12x + 11 = 0 \). For a quadratic equation of the form \( ax^2 + bx + c = 0 \), the sum and product of the roots are:
- Sum of roots: \( a + b = -\frac{b}{a} \)
- Product of roots: \( a b = \frac{c}{a} \)
Here, \( a = 4 \), \( b = -12 \), \( c = 11 \). Thus:
\[
a + b = -\frac{-12}{4} = 3
\]
\[
a b = \frac{11}{4}
\]
To find \( a^2 + b^2 \), use the identity:
\[
a^2 + b^2 = (a + b)^2 - 2ab
\]
Substitute the values:
\[
a^2 + b^2 = (3)^2 - 2 \cdot \frac{11}{4} = 9 - \frac{22}{4} = 9 - \frac{11}{2} = \frac{18 - 11}{2} = \frac{7}{2}
\]
Thus, the value of \( a^2 + b^2 \) is:
\[
\boxed{\frac{7}{2}}
\]