We are given two conditions:
- \( \tan(\theta - \phi) = \frac{3}{4} \)
- \( \theta + \phi = \frac{\pi}{2} \)
From the second condition, we can express \( \phi \) in terms of \( \theta \):
\[
\phi = \frac{\pi}{2} - \theta
\]
Now, substitute this into the expression we want to evaluate:
\[
\tan \left( \frac{\pi}{4} - \theta \right) + \tan \left( \frac{\pi}{4} - \phi \right) = \tan \left( \frac{\pi}{4} - \theta \right) + \tan \left( \frac{\pi}{4} - \left( \frac{\pi}{2} - \theta \right) \right)
\]
\[
= \tan \left( \frac{\pi}{4} - \theta \right) + \tan \left( \frac{\pi}{4} - \frac{\pi}{2} + \theta \right)
\]
\[
= \tan \left( \frac{\pi}{4} - \theta \right) + \tan \left( \theta - \frac{\pi}{4} \right)
\]
Using the property \( \tan(-x) = -\tan(x) \), we have \( \tan \left( \theta - \frac{\pi}{4} \right) = - \tan \left( \frac{\pi}{4} - \theta \right) \).
Therefore, the expression becomes:
\[
\tan \left( \frac{\pi}{4} - \theta \right) - \tan \left( \frac{\pi}{4} - \theta \right) = 0
\]
Since 0 is not among the options, let's re-examine the problem and our steps.
From \( \theta + \phi = \frac{\pi}{2} \), we have \( \tan \phi = \tan(\frac{\pi}{2} - \theta) = \cot \theta = \frac{1}{\tan \theta} \).
Using the first condition:
\[
\tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi} = \frac{\tan \theta - \frac{1}{\tan \theta}}{1 + \tan \theta \cdot \frac{1}{\tan \theta}} = \frac{\frac{\tan^2 \theta - 1}{\tan \theta}}{2} = \frac{\tan^2 \theta - 1}{2 \tan \theta} = \frac{3}{4}
\]
\[
4(\tan^2 \theta - 1) = 6 \tan \theta
\]
\[
4 \tan^2 \theta - 6 \tan \theta - 4 = 0
\]
\[
2 \tan^2 \theta - 3 \tan \theta - 2 = 0
\]
\[
(2 \tan \theta + 1)(\tan \theta - 2) = 0
\]
So, \( \tan \theta = 2 \) or \( \tan \theta = -\frac{1}{2} \).
Case 1: \( \tan \theta = 2 \), then \( \tan \phi = \frac{1}{2} \).
\[
\tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{1 - 2}{1 + 2} = -\frac{1}{3}
\]
\[
\tan\left(\frac{\pi}{4} - \phi\right) = \frac{1 - \tan \phi}{1 + \tan \phi} = \frac{1 - \frac{1}{2}}{1 + \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}
\]
Sum = \( -\frac{1}{3} + \frac{1}{3} = 0 \).
Case 2: \( \tan \theta = -\frac{1}{2} \), then \( \tan \phi = -2 \).
\[
\tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - (-\frac{1}{2})}{1 + (-\frac{1}{2})} = \frac{\frac{3}{2}}{\frac{1}{2}} = 3
\]
\[
\tan\left(\frac{\pi}{4} - \phi\right) = \frac{1 - (-2)}{1 + (-2)} = \frac{3}{-1} = -3
\]
Sum = \( 3 + (-3) = 0 \).