Problem:
Find the square root of the complex number
\[
7 + 24i.
\]
Step 1: Let the square root be
\[
a + bi,
\]
where \( a \) and \( b \) are real numbers.
Step 2: Write the equation
\[
(a + bi)^2 = 7 + 24i.
\]
Expanding the left side:
\[
a^2 + 2ab i + b^2 i^2 = a^2 - b^2 + 2ab i.
\]
Equate real and imaginary parts:
\[
a^2 - b^2 = 7,
\]
\[
2ab = 24.
\]
Step 3: Solve the system
From the imaginary part:
\[
2ab = 24 \implies ab = 12.
\]
From the real part:
\[
a^2 - b^2 = 7.
\]
Express \( b \) in terms of \( a \):
\[
b = \frac{12}{a}.
\]
Substitute into the real part equation:
\[
a^2 - \left(\frac{12}{a}\right)^2 = 7,
\]
\[
a^2 - \frac{144}{a^2} = 7.
\]
Multiply both sides by \( a^2 \):
\[
a^4 - 144 = 7a^2.
\]
Rearranged:
\[
a^4 - 7a^2 - 144 = 0.
\]
Let \( y = a^2 \):
\[
y^2 - 7y - 144 = 0.
\]
Solve quadratic for \( y \):
\[
y = \frac{7 \pm \sqrt{49 + 576}}{2} = \frac{7 \pm \sqrt{625}}{2} = \frac{7 \pm 25}{2}.
\]
Two solutions:
\[
y = \frac{7 + 25}{2} = 16, \quad y = \frac{7 - 25}{2} = -9 \quad (\text{discard negative}).
\]
So,
\[
a^2 = 16 \implies a = \pm 4.
\]
From \( ab = 12 \),
if \( a = 4 \), then
\[
b = \frac{12}{4} = 3.
\]
Step 4: Final answer
\[
\sqrt{7 + 24i} = 4 + 3i.
\]
(The other root is \( -4 - 3i \).)
Answer:
\[
\boxed{4 + 3i}.
\]