We are asked to find the square root of the complex number \( 7 + 24i \).
To find \( \sqrt{7 + 24i} \), we use the fact that the square root of a complex number \( z = x + yi \) can be expressed as \( \sqrt{r}(\cos \theta + i \sin \theta) \), where \( r = \sqrt{x^2 + y^2} \) and \( \theta = \tan^{-1}(\frac{y}{x}) \).
Here, \( 7 + 24i \) has \( x = 7 \) and \( y = 24 \).
Step 1: Finding the magnitude
The magnitude \( r \) is:
\[
r = \sqrt{7^2 + 24^2} = \sqrt{49 + 576} = \sqrt{625} = 25.
\]
Step 2: Finding the argument
The argument \( \theta \) is:
\[
\theta = \tan^{-1}\left( \frac{24}{7} \right) \approx 74.05^\circ.
\]
Step 3: Applying the square root formula
Using the formula for the square root of a complex number, the square root of \( 7 + 24i \) is:
\[
\sqrt{7 + 24i} = \sqrt{25} \left( \cos \frac{74.05^\circ}{2} + i \sin \frac{74.05^\circ}{2} \right).
\]
After calculating, we find that:
\[
\sqrt{7 + 24i} = 4 + 3i.
\]
Thus, the square root of \( 7 + 24i \) is \( 4 + 3i \).