If \( n \) is an integer and \( Z = \cos \theta + i \sin \theta, \theta \neq (2n + 1)\frac{\pi}{2}, \) then: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = ? \]
The value of \( \cosh \left( \sin^{-1} \left( \sqrt{8} \right) + \cosh^{-1} 5 \right) \) is: