>
AP EAMCET
>
Mathematics
List of top Mathematics Questions asked in AP EAMCET
For \(|x|<\frac{1}{\sqrt{2}}\) the coefficient of \(x\) in the expansion of \(\frac{(1-4x)^2(1-2x^2)^{1/2}}{(4-x)^{3/2}}\) is
AP EAMCET - 2024
AP EAMCET
Mathematics
Binomial theorem
The circumference of a circle passing through the point \( (4, 6) \) with two normals represented by \( 2x - 3y + 4 = 0 \) and \( x + y - 3 = 0 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Mensuration
If \( z = x+iy \), \( x^2+y^2 = 1 \) and \( z_1 = e^{i\theta} \), then the expression \( \frac{z_1^{2n-1} - 1}{z_1^{2^n-1} + 1} \) simplifies to:
AP EAMCET - 2024
AP EAMCET
Mathematics
General and Particular Solutions of a Differential Equation
Let \( A, B, C, D, \) and \( E \) be \( n \times n \) matrices, each with non-zero determinant. If \( ABCDE = I \), then \( C^{-1} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
General and Particular Solutions of a Differential Equation
If \(2.4^{2n+1} + 3^{3n+1}\) is divisible by \(k\) for all \(n \in \mathbb{N}\), then \(k\) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
The square root of
\( 7 + 24i \)
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
solution of system of linear inequalities in two variables
If \((\alpha + \beta)\) is not a multiple of \(\frac{\pi}{2}\) and \(3 \sin(\alpha - \beta) = 5 \cos(\alpha + \beta)\), then
\[ \tan\left(\frac{\pi}{4} + \alpha\right) + 4\tan\left(\frac{\pi}{4} + \beta\right) = \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Algebraic Methods of Solving a Pair of Linear Equations
If \([x]\) is the greatest integer function, then evaluate the integral \( \int_{0}^{5} [x] \, dx \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
If \( L_1 \) and \( L_2 \) are two lines which pass through origin and have direction ratios \( (3, 1, -5) \) and \( (2, 3, -1) \) respectively, then the equation of the plane containing \( L_1 \) and \( L_2 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
general equation of a line
The largest among the distances from the point \(P(15,9)\) to the points on the circle \(x^2 + y^2 - 6x - 8y - 11 = 0\) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Shortest Distance Between Skew Lines
If \( \vec{f} = i + j + k \) and \( \vec{g} = 2i - j + 3k \), then the projection vector of \( \vec{f} \) on \( \vec{g} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
Let \( \mathbf{a} = 3\hat{i} + 4\hat{j} - 5\hat{k} \), \( \mathbf{b} = 2\hat{i} + \hat{j} - 2\hat{k} \). The projection of the sum of the vectors \( \mathbf{a}, \mathbf{b} \) on the vector perpendicular to the plane of \( \mathbf{a}, \mathbf{b} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
In \(\triangle ABC\), if \(4r_1 = 5r_2 = 6r_3\), then \(\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} =\)
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
The values of \( x \) for which the angle between the vectors
\[ \mathbf{a} = x\hat{i} + 2\hat{j} + \hat{k}, \quad \mathbf{b} = -\hat{i} + 2\hat{j} + x\hat{k} \]
is obtuse lie in the interval:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
The length of the latus rectum of \( 16x^2 + 25y^2 = 400 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Conic sections
If the coefficients of the \( (2r + 6)^{th
\) and \( (r - 1)^{th} \) terms in the expansion of \( (1 + x)^{21} \) are equal, then the value of \( r \) is:}
AP EAMCET - 2024
AP EAMCET
Mathematics
Binomial theorem
The number of different ways of preparing a garland using 6 distinct white roses and 6 distinct red roses such that no two red roses come together is:
AP EAMCET - 2024
AP EAMCET
Mathematics
permutations and combinations
The orthogonal projection vector of \( \bar{a} = 2\bar{i} + 3\bar{j} + 3\bar{k} \) on \( \bar{b} = \bar{i} - 2\bar{j} + \bar{k} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
For a dataset, if the coefficient of variation is 25 and the mean is 44, find the variance.
AP EAMCET - 2024
AP EAMCET
Mathematics
Statistics
Let \( \mathbf{a}, \mathbf{b} \) be two unit vectors. If \( \mathbf{c} = \mathbf{a} + 2\mathbf{b} \) and \( \mathbf{d} = 5\mathbf{a} - 4\mathbf{b} \) are perpendicular to each other, find the angle between \( \mathbf{a} \) and \( \mathbf{b} \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry and Vectors
If the vectors \(a\bar{i} + \bar{j} + \bar{k}\), \(\bar{i} + b\bar{j} + \bar{k}\), \(\bar{i} + \bar{j} + c\bar{k}\) (\(a \ne b \ne c \ne 1\)) are coplanar, then \(\frac{1}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} =\)
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
The general solution of \( \cot \frac{x}{2} - \cot x = \csc \frac{x}{2} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Trigonometric Equations
If \( \mathbf{f}, \mathbf{g}, \mathbf{h} \) are mutually orthogonal vectors of equal magnitudes, then find the angle between the vectors \( \mathbf{f} + \mathbf{g} + \mathbf{h} \) and \( \mathbf{h} \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry and Vectors
The origin is shifted to the point \( (2, 3) \) by translation of axes and then the coordinate axes are rotated about the origin through an angle \( \theta \) in the counter-clockwise sense. Due to this if the equation \( 3x^2 + 2xy + 3y^2 - 18x - 22y + 50 = 0 \) is transformed to \( 4x^2 + 2y^2 - 1 = 0 \), then the angle \( \theta = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
If \( (a, b) \) is the midpoint of the chord \( 2x - y + 3 = 0 \) of the circle \( x^2 + y^2 + 6x - 4y + 4 = 0 \), then \( 2a + 3b = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
circle
Prev
1
...
5
6
7
8
9
...
29
Next