Using the identity:
\[
\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right), \quad \text{if } ab1
\]
Substituting \( a = 2, b = 3 \):
\[
\tan^{-1} 2 + \tan^{-1} 3 = \tan^{-1} \left( \frac{2 + 3}{1 - (2 \times 3)} \right)
\]
\[
= \tan^{-1} \left( \frac{5}{1 - 6} \right) = \tan^{-1} \left( \frac{5}{-5} \right) = \tan^{-1} (-1)
\]
\[
= -\frac{\pi}{4}
\]
Since the angle must be in the second quadrant:
\[
\tan^{-1} 2 + \tan^{-1} 3 = \pi - \frac{\pi}{4} = \frac{3\pi}{4}
\]
Thus, the correct answer is \( \frac{3\pi}{4} \).