Question:

Find the argument of the given complex expression: \[ \text{Arg} \left[ \frac{(1 + i \sqrt{3}) \cdot (\sqrt{3} - i)}{(1 - i) \cdot ( -i)} \right] = \]

Show Hint

For complex fractions, calculate the argument of the numerator and denominator separately and subtract the denominator's argument from the numerator's argument.
Updated On: Mar 24, 2025
  • $\frac{5 \pi}{6}$
  • $\frac{\pi}{4}$
  • $\frac{2 \pi}{3}$
  • $-\frac{\pi}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


We need to compute the argument of the given expression. To find the argument of a complex fraction, we calculate the argument of the numerator and denominator separately and then subtract the denominator's argument from the numerator's argument.
1. The argument of the numerator is the argument of the product of two complex numbers: \[ \text{Arg}(1 + i\sqrt{3}) + \text{Arg}(\sqrt{3} - i) \] The argument of $1 + i\sqrt{3}$ is $\frac{\pi}{3}$, and the argument of $\sqrt{3} - i$ is $-\frac{\pi}{6}$.
2. The argument of the denominator is: \[ \text{Arg}(1 - i) + \text{Arg}(-i) \] The argument of $1 - i$ is $-\frac{\pi}{4}$, and the argument of $-i$ is $-\frac{\pi}{2}$. Thus, the total argument is: \[ \left( \frac{\pi}{3} - \frac{\pi}{6} \right) - \left( -\frac{\pi}{4} - \frac{\pi}{2} \right) \] Simplifying the expression: \[ \frac{\pi}{6} - \left( -\frac{3\pi}{4} \right) = \frac{\pi}{6} + \frac{3\pi}{4} = \frac{5\pi}{6} \] Therefore, the argument of the given expression is $\frac{\pi}{4}$.
Was this answer helpful?
0
0

Top Questions on complex numbers

View More Questions