If \( n \) is an integer and \( Z = \cos \theta + i \sin \theta, \theta \neq (2n + 1)\frac{\pi}{2}, \) then: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = ? \]
Show Hint
When working with complex exponentials, apply De Moivre's theorem to express the powers of complex numbers in terms of sines and cosines. Use the conjugate to simplify the fraction.
We are given \( Z = \cos \theta + i \sin \theta \), which is the polar form of a complex number, and we are asked to evaluate:
\[
\frac{1 + Z^{2n}}{1 - Z^{2n}}.
\]
Using De Moivre's theorem, we know:
\[
Z^{2n} = \cos(2n\theta) + i \sin(2n\theta).
\]
Step 1: Substituting for \( Z^{2n} \)
Substituting into the expression:
\[
\frac{1 + \cos(2n\theta) + i \sin(2n\theta)}{1 - \cos(2n\theta) - i \sin(2n\theta)}.
\]
Step 2: Simplifying the expression
Multiply the numerator and the denominator by the conjugate of the denominator:
\[
\frac{(1 + \cos(2n\theta) + i \sin(2n\theta)) (1 - \cos(2n\theta) + i \sin(2n\theta))}{(1 - \cos(2n\theta) - i \sin(2n\theta)) (1 - \cos(2n\theta) + i \sin(2n\theta))}.
\]
Simplifying the denominator:
\[
(1 - \cos(2n\theta))^2 + \sin^2(2n\theta) = 2(1 - \cos(2n\theta)) = 4\sin^2(n\theta).
\]
The numerator simplifies to:
\[
i \cot n\theta.
\]
Thus, the value of the given expression is \( i \cot n\theta \).