If \( n \) is an integer and \( Z = \cos \theta + i \sin \theta, \theta \neq (2n + 1)\frac{\pi}{2}, \) then: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = ? \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for: