If \( n \) is an integer and \( Z = \cos \theta + i \sin \theta, \theta \neq (2n + 1)\frac{\pi}{2}, \) then: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = ? \]
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to: