Question:

Let \( \mathbf{a}, \mathbf{b} \) be two unit vectors. If \( \mathbf{c} = \mathbf{a} + 2\mathbf{b} \) and \( \mathbf{d} = 5\mathbf{a} - 4\mathbf{b} \) are perpendicular to each other, find the angle between \( \mathbf{a} \) and \( \mathbf{b} \).

Show Hint

For perpendicular vectors \( \mathbf{c} \cdot \mathbf{d} = 0 \), expand and solve for \( \cos \theta \).
Updated On: Mar 19, 2025
  • \( \frac{\pi}{6} \)
  • \( \frac{\pi}{4} \)
  • \( \frac{\pi}{3} \)
  • \( \frac{\pi}{8} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Condition for Perpendicular Vectors
\[ \mathbf{c} \cdot \mathbf{d} = 0 \] Expanding: \[ (\mathbf{a} + 2\mathbf{b}) \cdot (5\mathbf{a} - 4\mathbf{b}) = 0 \] \[ 5 (\mathbf{a} \cdot \mathbf{a}) - 4 (\mathbf{a} \cdot \mathbf{b}) + 10 (\mathbf{b} \cdot \mathbf{a}) - 8 (\mathbf{b} \cdot \mathbf{b}) = 0 \] \[ 5 - 4\cos \theta + 10\cos \theta - 8 = 0 \] \[ -3 + 6\cos \theta = 0 \] \[ \cos \theta = \frac{1}{2} \] \[ \theta = \frac{\pi}{3} \] Thus, the correct answer is \( \frac{\pi}{3} \).
Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions