Since \(f(x)\) is continuous at \(x = 0\), we must have
\[\lim_{x \to 0} f(x) = f(0) = K.\]Thus, we need to find
\[\lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{\sqrt{a + x}
- \sqrt{a
- x}}.\]We have
\begin{align*}
&\lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{\sqrt{a + x}
- \sqrt{a
- x}}
&= \lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{\sqrt{a + x}
- \sqrt{a
- x}} \cdot \frac{\sqrt{a + x} + \sqrt{a
- x}}{\sqrt{a + x} + \sqrt{a
- x}}
&= \lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{2x} \cdot (\sqrt{a + x} + \sqrt{a
- x})
&= \lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{2x} \cdot 2 \sqrt{a}
&= \sqrt{a} \lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{x}
&= \sqrt{a} \lim_{x \to 0} \frac{\sqrt{a^2
- ax
- x^2}
- \sqrt{x^2 + ax + a^2}}{x} \cdot \frac{\sqrt{a^2
- ax
- x^2} + \sqrt{x^2 + ax + a^2}}{\sqrt{a^2
- ax
- x^2} + \sqrt{x^2 + ax + a^2}}
&= \sqrt{a} \lim_{x \to 0} \frac{(a^2
- ax
- x^2)
- (x^2 + ax + a^2)}{x (\sqrt{a^2
- ax
- x^2} + \sqrt{x^2 + ax + a^2})}
&= \sqrt{a} \lim_{x \to 0} \frac{
-2ax
- 2x^2}{x (\sqrt{a^2
- ax
- x^2} + \sqrt{x^2 + ax + a^2})}
&= \sqrt{a} \lim_{x \to 0} \frac{
-2a
- 2x}{\sqrt{a^2
- ax
- x^2} + \sqrt{x^2 + ax + a^2}}
&= \sqrt{a} \cdot \frac{
-2a}{2 \sqrt{a^2}}
&= \sqrt{a} \cdot \frac{
-2a}{2a}
&=
-\sqrt{a}.
\end{align*}Therefore, \(K =
-\sqrt{a}\).