>
Exams
>
Mathematics
>
Limits
>
evaluate the limit lim x to 0 frac 1 cos x cos 2x
Question:
Evaluate the limit:
\[ \lim_{x \to 0} \frac{1 - \cos x \cos 2x}{\sin^2 x} \]
Show Hint
For small-angle limit problems, use the standard approximations \( \cos x \approx 1 - \frac{x^2}{2} \) and \( \sin x \approx x \).
AP EAMCET - 2024
AP EAMCET
Updated On:
May 19, 2025
\( \frac{11}{4} \)
\( \frac{5}{2} \)
\( 3 \)
\( 5 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1: Expanding trigonometric functions
Using approximations: \[ \cos x \approx 1 - \frac{x^2}{2}, \quad \cos 2x \approx 1 - 2x^2 \] \[ \cos x \cos 2x \approx (1 - \frac{x^2}{2})(1 - 2x^2) \] \[ \approx 1 - \frac{x^2}{2} - 2x^2 + O(x^4) \] \[ \approx 1 - \frac{5x^2}{2} \] \[ 1 - \cos x \cos 2x \approx \frac{5x^2}{2} \]
Step 2: Evaluating the limit
\[ \lim_{x \to 0} \frac{\frac{5x^2}{2}}{x^2} \] \[ = \frac{5}{2} \]
Download Solution in PDF
Was this answer helpful?
1
0
Top Questions on Limits
Match List-I with List-II:
\[\begin{array}{|c|c|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline \text{(A)}\ \lim_{x\to 0}(1+2x)^{\frac{1}{x}} & \text{(I)}\ e^{6} \\ \hline \text{(B)}\ \lim_{x\to \infty}\left(1+\frac{1}{x}\right)^{x} & \text{(II)}\ e^{2} \\ \hline \text{(C)}\ \lim_{x\to 0}(1+5x)^{\frac{2}{x}} & \text{(III)}\ e \\ \hline \text{(D)}\ \lim_{x\to \infty}\left(1+\frac{3}{x}\right)^{2x} & \text{(IV)}\ e^{5} \\ \hline \end{array}\] Choose the correct answer from the options given below:
CUET (PG) - 2025
Computer Science
Limits
View Solution
The value of
$\displaystyle \lim_{x \to \infty}\left(1+\frac{2}{3x}\right)^{x}$
is:
CUET (PG) - 2025
Computer Science
Limits
View Solution
Evaluate:
\[ \lim_{x \to 0} \frac{\sin 3x - 3 \sin x}{x^3} \]
BITSAT - 2025
Mathematics
Limits
View Solution
Given below are two statements:
Statement I:
$\lim_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5}$
Statement II:
$\lim_{x \to 1} \left( \frac{2}{x^{1-x}} \right) = \frac{1}{e^2}$
In the light of the above statements, choose the correct answer from the options given below
JEE Main - 2025
Mathematics
Limits
View Solution
For $ t>-1 $, let $ \alpha_t $ and $ \beta_t $ be the roots of the equation
$ \left( (t + 2)^{\frac{1}{7}} - 1 \right)x^2 + \left( (t + 2)^{\frac{1}{6}} - 1 \right)x + \left( (t + 2)^{\frac{1}{21}} - 1 \right) = 0. $
If $ \lim_{t \to 1^+} \alpha_t = a $ and $ \lim_{t \to 1^+} \beta_t = b $, then $ 72(a + b)^2 $ is equal to:
JEE Main - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in AP EAMCET exam
A body of mass 1.5 kg is moving towards south with a uniform velocity of \( 8 { ms}^{-1} \). A force of \( 6 \) N is applied to the body towards east. The displacement of the body 3 seconds after the application of the force is:
AP EAMCET - 2024
thermal properties of matter
View Solution
If
\[ x = 3 \left[ \sin t - \log \left( \cot \frac{t}{2} \right) \right], \quad y = 6 \left[ \cos t + \log \left( \tan \frac{t}{2} \right) \right] \] then find \( \frac{dy}{dx} \).
AP EAMCET - 2024
Differentiation
View Solution
If \( M_1 \) and \( M_2 \) are the maximum values of \( \frac{1}{11 \cos 2x + 60 \sin 2x + 69} \) and \( 3 \cos^2 5x + 4\sin^2 5x \) respectively, then \( \frac{M_1}{M_2} = \):
AP EAMCET - 2024
Maxima and Minima
View Solution
The mass % of urea solution is 6. The total weight of the solution is 1000 g. What is its concentration in mol L\(^{-1}\)? (Density of water = 1.0 g mL\(^{-1}\))
(Given: C = 12u, N = 14u, O = 16u, H = 1u)
AP EAMCET - 2024
molecular mass of polymers
View Solution
At 300 K, 6 g of urea was dissolved in 500 mL of water. What is the osmotic pressure (in atm) of the resultant solution? (R = 0.082 L atm K$^{-1}$ mol$^{-1}$)
(C=12;N=14;O=16;H=1)
AP EAMCET - 2024
Colligative Properties
View Solution
View More Questions