Question:

Evaluate the limit: \[ \lim_{x \to 0} \frac{1 - \cos x \cos 2x}{\sin^2 x} \]

Show Hint

For small-angle limit problems, use the standard approximations \( \cos x \approx 1 - \frac{x^2}{2} \) and \( \sin x \approx x \).
Updated On: Mar 19, 2025
  • \( \frac{11}{4} \)
  • \( \frac{5}{2} \)
  • \( 3 \)
  • \( 5 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Expanding trigonometric functions Using approximations: \[ \cos x \approx 1 - \frac{x^2}{2}, \quad \cos 2x \approx 1 - 2x^2 \] \[ \cos x \cos 2x \approx (1 - \frac{x^2}{2})(1 - 2x^2) \] \[ \approx 1 - \frac{x^2}{2} - 2x^2 + O(x^4) \] \[ \approx 1 - \frac{5x^2}{2} \] \[ 1 - \cos x \cos 2x \approx \frac{5x^2}{2} \] Step 2: Evaluating the limit \[ \lim_{x \to 0} \frac{\frac{5x^2}{2}}{x^2} \] \[ = \frac{5}{2} \]
Was this answer helpful?
0
0