Question:

If the matrix is: 
\(\left| \begin{array}{ccc} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{array} \right|>0, \text{ then } abc>?\)

Show Hint

Always ensure to check the expanded form of the determinant, which might provide constraints on the variables.
Updated On: Mar 13, 2025
  • \( 1 \)
  • \( -8 \)
  • \( 8 \)
  • \( 3 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To determine the condition for \( abc \) given the inequality: 

\[ \left| \begin{array}{ccc} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{array} \right| > 0, \]

we first compute the determinant of the matrix:

\[ \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix}. \]

Expanding the determinant along the first row:

\[ \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = a \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} + 1 \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix}. \]

Calculating the \( 2 \times 2 \) determinants:

\[ \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} = bc - 1, \] \[ \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} = c - 1, \] \[ \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} = 1 - b. \]

Substituting these back into the expression:

\[ a(bc - 1) - 1(c - 1) + 1(1 - b) = abc - a - c + 1 + 1 - b. \]

Simplifying:

\[ abc - a - b - c + 2. \]

Thus, the inequality becomes:

\[ abc - a - b - c + 2 > 0. \]

Rearranging terms:

\[ abc > a + b + c - 2. \]

To find a lower bound for \( abc \), we consider the case when \( a = b = c \). Let \( a = b = c = k \). Substituting into the inequality:

\[ k^3 > 3k - 2. \]

Rearranging:

\[ k^3 - 3k + 2 > 0. \]

Factoring the cubic equation:

\[ k^3 - 3k + 2 = (k - 1)^2 (k + 2). \]

The roots of the equation \( k^3 - 3k + 2 = 0 \) are \( k = 1 \) (double root) and \( k = -2 \). The inequality \( k^3 - 3k + 2 > 0 \) holds for \( k > -2 \) and \( k \neq 1 \).

For \( k > 1 \), \( k^3 - 3k + 2 > 0 \) is satisfied. For \( k < -2 \), the inequality is not satisfied. Therefore, the minimum value of \( abc \) occurs when \( a = b = c = -2 \):

\[ abc = (-2)^3 = -8. \]

Thus, the inequality \( abc > -8 \) must hold.

Therefore, the correct option is:

\[ \boldsymbol{-8} \]

Was this answer helpful?
0
0