>
AP EAMCET
>
Mathematics
List of top Mathematics Questions asked in AP EAMCET
If \( f(0) = 0 \), \( f'(0) = 3 \), then the derivative of \( y = f(f(f(f(f(x))))) \) at \( x = 0 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differentiation
The value \( c \) of Lagrange’s Mean Value Theorem for \( f(x) = e^x + 24 \) in \( [0,1] \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Mean Value Theorem
Equation of the normal to the curve \( y = x^2 + x \) at the point \( (1,2) \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Tangents and Normals
Displacement \( s \) of a particle at time \( t \) is expressed as \( s = 2t^3 - 9t \). Find the acceleration at the time when the velocity vanishes.
AP EAMCET - 2024
AP EAMCET
Mathematics
distance and displacement
If a running track of 500 ft. is to be laid out enclosing a playground, the shape of which is a rectangle with a semicircle at each end, then the length of the rectangular portion such that the area of the rectangular portion is maximum is (in feet).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry
Evaluate the integral:
\[ \int \frac{x^2 - 1}{x^3\sqrt{2x^4 - 2x^2 + 1}} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
$$ \int \frac{x^3 \tan^{-1}(x^4)}{1 + x^8} \,dx. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
$$ I = \int \frac{2}{1 + x + x^2} \,dx. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int \frac{1}{x^2\sqrt{1 + x^2}} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int \frac{\sin 7x}{\sin 2x \sin 5x} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the limit:
\[ \lim_{n \to \infty} \left( \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2 - 1}} + \dots + \frac{1}{\sqrt{n^2 - (n-1)^2}} \right). \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The area (in square units) bounded by the curves \( x = y^2 \) and \( x = 3 - 2y^2 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Area under Simple Curves
Evaluate the integral:
\[ I = \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The general solution of the differential equation:
\[ (1 + \tan y) (dx - dy) + 2x \, dy = 0. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
The general solution of the differential equation:
$$ x \, dy - y \, dx = \sqrt{x^2 + y^2} \, dx. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
Evaluate the integral \( \int_0^{\pi} \frac{x \sin x}{4 \cos^2 x + 3 \sin^2 x} dx \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The sum of the order and degree of the differential equation:
\[ x \left( \frac{d^2 y}{dx^2} \right)^{1/2} = \left( 1 + \frac{dy}{dx} \right)^{4/3} \] is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
If the distance between the planes \( 2x + y + z + 1 = 0 \) and \( 2x + y + z + \alpha = 0 \) is 3 units, then the product of all possible values of \( \alpha \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
If the ratio of the terms equidistant from the middle term in the expansion of \( (1 + x)^{12} \) is \( \frac{1}{256} \), then the sum of all the terms of the expansion \( (1 + x)^{12} \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
general and middle terms
In the expansion of \( \frac{2x+1}{(1+x)(1-2x)} \), the sum of the coefficients of the first 5 odd powers of \( x \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Binomial Expansion
If \( A = \begin{pmatrix} 1 & 2 \\ -2 & -5 \end{pmatrix} \) and \( \alpha^2 + \beta A = 21 \) for some \( \alpha, \beta \in \mathbb{R} \), then find \( \alpha + \beta \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Matrix
Consider the point \( P(\alpha, \beta) \) on the line \( 2x + y = 1 \). If the points \( P \) and \( (3,2) \) are conjugate points with respect to the circle \( x^2 + y^2 = 4 \), then find \( \alpha + \beta \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
If
\[ \frac{x^2+3}{x^4+2x^2+9} = \frac{Ax+B}{x^2+ax+b} + \frac{Cx+D}{x^2+cx+d} \]
then \( aA + bB + cC + dD = \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
The line \( x - 2y - 3 = 0 \) cuts the parabola \( y^2 = 4ax \) at points P and Q. If the focus of this parabola is \( \left(\frac{1}{4}, k\right) \), then PQ is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Parabola
Prev
1
...
3
4
5
6
7
...
29
Next