Step 1: Formula for vector projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b}. \] Step 2: Compute dot products \[ \bar{a} \cdot \bar{b} = (2)(1) + (3)(-2) + (3)(1) = 2 - 6 + 3 = -1. \] \[ \bar{b} \cdot \bar{b} = (1)^2 + (-2)^2 + (1)^2 = 1 + 4 + 1 = 6. \] Step 3: Compute projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{-1}{6} (1\bar{i} - 2\bar{j} + 1\bar{k}) = \frac{1}{6} (-\bar{i} + 2\bar{j} - \bar{k}). \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))