Step 1: Formula for vector projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b}. \] Step 2: Compute dot products \[ \bar{a} \cdot \bar{b} = (2)(1) + (3)(-2) + (3)(1) = 2 - 6 + 3 = -1. \] \[ \bar{b} \cdot \bar{b} = (1)^2 + (-2)^2 + (1)^2 = 1 + 4 + 1 = 6. \] Step 3: Compute projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{-1}{6} (1\bar{i} - 2\bar{j} + 1\bar{k}) = \frac{1}{6} (-\bar{i} + 2\bar{j} - \bar{k}). \]
Let $E_1$ and $E_2$ be two independent events of a random experiment such that
$P(E_1) = \frac{1}{2}, \quad P(E_1 \cup E_2) = \frac{2}{3}$.
Then match the items of List-I with the items of List-II:
The correct match is:
In the given circuit, the potential difference across the 5 \(\mu\)F capacitor is