Step 1: Formula for vector projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b}. \] Step 2: Compute dot products \[ \bar{a} \cdot \bar{b} = (2)(1) + (3)(-2) + (3)(1) = 2 - 6 + 3 = -1. \] \[ \bar{b} \cdot \bar{b} = (1)^2 + (-2)^2 + (1)^2 = 1 + 4 + 1 = 6. \] Step 3: Compute projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{-1}{6} (1\bar{i} - 2\bar{j} + 1\bar{k}) = \frac{1}{6} (-\bar{i} + 2\bar{j} - \bar{k}). \]
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
The percentage error in the measurement of mass and velocity are 3% and 4% respectively. The percentage error in the measurement of kinetic energy is: