Question:

The orthogonal projection vector of \( \bar{a} = 2\bar{i} + 3\bar{j} + 3\bar{k} \) on \( \bar{b} = \bar{i} - 2\bar{j} + \bar{k} \) is:

Show Hint

For vector projections, use the formula \( \frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b} \).
Updated On: Mar 13, 2025
  • \( -\frac{1}{6} (2\bar{i} + 3\bar{j} + 3\bar{k}) \)
  • \( \frac{1}{6} (-\bar{i} + 2\bar{j} - \bar{k}) \)
  • \( \bar{i} - 2\bar{j} + \bar{k} \)
  • \( -\bar{i} + 2\bar{j} - \bar{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Formula for vector projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b}. \] Step 2: Compute dot products \[ \bar{a} \cdot \bar{b} = (2)(1) + (3)(-2) + (3)(1) = 2 - 6 + 3 = -1. \] \[ \bar{b} \cdot \bar{b} = (1)^2 + (-2)^2 + (1)^2 = 1 + 4 + 1 = 6. \] Step 3: Compute projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{-1}{6} (1\bar{i} - 2\bar{j} + 1\bar{k}) = \frac{1}{6} (-\bar{i} + 2\bar{j} - \bar{k}). \]

Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions