Step 1: Formula for vector projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b}. \] Step 2: Compute dot products \[ \bar{a} \cdot \bar{b} = (2)(1) + (3)(-2) + (3)(1) = 2 - 6 + 3 = -1. \] \[ \bar{b} \cdot \bar{b} = (1)^2 + (-2)^2 + (1)^2 = 1 + 4 + 1 = 6. \] Step 3: Compute projection \[ \text{Proj}_{\bar{b}} \bar{a} = \frac{-1}{6} (1\bar{i} - 2\bar{j} + 1\bar{k}) = \frac{1}{6} (-\bar{i} + 2\bar{j} - \bar{k}). \]
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below: