The equations
\[
a_1x + b_1y + c_1z = d_1,\quad a_2x + b_2y + c_2z = d_2,\quad a_3x + b_3y + c_3z = d_3
\]
represent three planes. Given that \( d_1d_2d_3 \ne 0 \) and
\[
\frac{a_i}{a_j} \ne \frac{b_i}{b_j} \ne \frac{c_i}{c_j} \quad \text{for } i, j = 1, 2, 3,\ i \ne j,
\]
Let
\[
A = \begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{bmatrix}, \quad
B = \begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}.
\]
If \( \text{rank}(A) = \text{rank}([A:B]) = 2 \), then the planes are such that